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I .  Phys. A: Math. Gen. 26 (1993) L108S-LlG91. Printed in the UK 

LETTER TO THE EDITOR 

Quantum superoscillator algebra for OSp(2/2) 

Preeti Parashart and S K Soni$ 
TDepartment of Physics and Astrophysics, University of DeIhi, Delhi IIwO7, India 
#Physics Department, SGTB Khalsa College, University of Delhi, Delhi 110007, India 

Received 1 July 1993 

Abstract. Using the 8 matrix formalism we construct a system of q-superoscillators, 
bosonic as well as fermionic, covariant under the coaction of the quantum orthosymplectic 
supergroup OSpp,,(2/2). 

A lot of interest has been generated in the theory of quantum deformations of Lie 
groups and Lie algebras. The study of q-deformations has been further extended to 
supergroups and superalgebras. In an interesting development, independently of the 
original formal considerations [l-31, a system of q-oscillators has been proposed for 
q-oscillator realizations of quantum Lie algebras and superalgebras. In particular, 
Chaichian et nZ [4] have succeeded in constructing the algebra of q-oscillators (bosonic 
as well as fermionic) covariant under the coaction of the quantum supergroup 
SU,(n/m). Their considerations also allow one to define a system of q-oscillators 
covariant with respect to other supergroups. The purpose of this note is to give a 
corresponding system of superoscillators covariant with respect to two parameter 
deformation of the quantum orthosymplectic group OSp(2/2). 

The system of deformed creation and annihilation operators can be identified with 
the coordinates and derivatives of non-commutative spaces covariant under the action 
of quantum groups [S-71. A non-commutative differential calculus on a general 
quadratic algebra covariant under the coaction of arbitrary quantum group has been 
developed by Wess and Zumino [7]. They assumed the foUowing commutation 
relations between variables and derivatives: 

(1.1) 

a,x'= Si+ c$da, (1.2) 

aiai= F;a,ah (1.3) 

x r x i =  B$hXf 

where the matrices B, C and Fare related to the R matrix of the quantum group. Wess 
and Zumino solved the constraints for these matrices in terms of the Z? matrix. 
However, Hlavaty [S] has shown that there exist more general solutions of the 
constraints satisfied by E ,  C and F matrices. The minimal polynomial of the matrix t? 
is of degree m and is defined as 

hf(R)=(t?-n,)(R-a2). . . (R-n,,,)=o (m s n'). (1.4) 
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The roots of the polynomial M(l?) correspond to the eigenvalues of l? but their 
multiplicities may differ. The solutions to the constraints are given by the following 
matrices 

where 

hfk(I?)=(&-&)-'h'f(R) K k = n ( - d j )  k = l , .  . . , a .  (1.6) 
i # k  

In this way we get a nice construction of quantum hyperplanes 

M k ( R )  Qk(&)=c(x' ,  . . . .x")/- 
Kk 

(1.7) 

and their differential calculi (given by B, C, F). The m = 2 case has been discussed in 
the literature quite often. We are here interested in the case when the minimal 
polynomial is of degree greater than two. The construction, however, works only for 
the hyperplanes given by e,(&). Differential calculi on other possible hyperplanes 
cannot be defined. The quantum superplane covariant under the action of GL(111) is 
discussed. Then we extend these considerations to quantum supergroup OSp(2/2) and 
formulate a consistent differential calculus which is realized in terms of quantum 
superoscillators. 

We start with the following R matrix [4,8-101 which gives one of the eight vertex 
solutions of the Yang-Baxter equation (BE), the complete list of which has been 
given by Hlavaty [SI: 

where p and q are two complex deformation parameters and w = q - Up. We also take 
p q = r Z .  This matrix which is a solution of the braid Yang-Baxter equation 

is a 'non-standard' 1111 &matrix because in the classical limit this reduces not to the 
usual permutation matrix but to the super (or graded) permutation matrix acting upon 
a superspace whose first coordinate is bosonic and the second is fermionic: 

ki&&iz= &3R12&3 (2.2) 

/ I O 0  o \  
0 0 1  0 

1 0 0 1 .  (2.3) 

\ o  0 0 - I /  
This l?-matrix is related to the R-matrix for q-deformation of coordinate functions on 
the supergroup GL(111) in the following way 

l?=9R. (2.4) 
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Given a matrix I? satisfying the braid YBE (given by (2.2)), the matrix R obtained from 
it by left multiplication with 9' can be shown to satisfy the graded Yang-Baxter 
equation 

RnRi&= R Z R I ~ R I Z  (2.5) 

This conclusion holds if, and only if, the sum of the degrees of the upper pair of 
indices of the R matrix matches that of the lower pair. This technical requirement is 
evidently satisfied for the matrix given in (2.1). Throughout this paper it is understood 
that in exponents like (-1)'i stands for the Zrgrade of the index i, which is 0 for the 
first row or column of a 2 x 2 matrix and 1 for the second. 

The quantum supergroup commutation relations can be wn'tten in matrix form as 

RTlT2=T2TlR (2.7) 
where we use the tensoring convention of [9] 

(Ti)$= (T@I)$ = (- l)"+"rd: 
(T&= (18 T):$= (- l ) " ' b + ~ ~ ; 6 ~ .  

In terms of the I? matrix (2.7) can be rewritten as 

RT,T;=T,T$ (2.9) 

Ti = 9 T , 9 .  (2.10) 
where 

Equations (2.2) and (2.9) are the crucial ingredient of FRT formalism [3] in the 
supersymmetic case 1111. In terms of generators equation (2.7) can be recast as 

R&,T;n= l$TiRT. (2.11) 
In the present case (2.11) leads to the familiar two-parameter deformation of GL(I/l) 

The minimal polynomial of the matrix @ given by (2.1) is of the second order and 
191. 

& = q  a 2 = - i t p .  (2.12) 
The relations defining the quantum superplane and the differential calculus corre- 
sponding to B2(I?) are given by 

xe=qex ez=o (2.13) 

(2.14) 

axae=p -'a,a, aeae = 0. (2.15) 
Since f ? ( q , p ) - ' = 9 f f  (q- ' ,p - ' )9  the formulae for the alternate differential calculus 
can he obtained by q+llq and p-+l lp  and taking the reverse of the factors in 
products. 

a s =  1 + A a , +  (4- l)eae 

a& = p a ,  aa= 1 - eae 
a,e=pea, 
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The 19 matrix given in (2.1) is closely related to the 19 matrix for the orthosymplec- 
tic phase space [12] covariant with respect to quantum OSp(2/2). This phase space is 
defined as the free associative algebra of the phase space variables 

xi = hao p=-. Iha, Xl=x x4=e . (2.16) 

subject to the following commutation relations 

X'X =pPX' X'X] = qX3X' 

XZP=pXY x3x4 = qX'X' 

(2.17) 

In addition we also have the orthosymplectic constraint 

i rx4x '  -rx1X+ r-'Xx1 + i r - ' X ' P =  0. (2.18) 

It can be shown that the orthosymplectic /? matrix solves the braid QYBE. This fact can 
be used to define four-dimensional quantum superplanes and differential calculi on 
them. Next we present one concrete example of such a superspace and its differential 
ialculus. 

Consider the simplest non-trivial case of a (2 + 2)-dimensional q-deformed ortho- 
symplectic phase space which can be regarded as a graduation of the underlying 
quantum vector superspace involving one bosonic and one fermionic coordinate. The 
non-vanishing coefficients of the 19 matrix for OSp(2/2) are [12]: 

"-li"- 19;; = fiz= - r-1 19"- 33-r 

1 9 3 1 - 1 9 2 4 - 1 9 4 1 -  
42- 34-rq-I 

12- 1 1 -  U- 41-r 4 1921- 1911-1942-1934- - I  

This 19 matrix satisfies the braid quantum Yang-Baxter equation (2.2). The minimal 
polynomial for 19 is of the third order 

M( 19) = (19 - rr)( fi + r-'I)( /i t I 'I ) = 0 (3 4 

1, = r . t2=A,= -r-l (3.3) 

with roots 
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and unit matrix I. The root -r-’ is a double root. In arriving at the result (3.2) we 
worked out the components of the Q matrix given by 

Q = ( R  - r I ) (R+r - ’ f ) .  (3.4) 

The non-vanishing coefficients of this matrix which turns out to be nilpotent are: 

The relations defining the quantum hyperplane Q1(R) are 

P‘”(X@X)  =o (3.6) 

where 

P m  ( R  + r - ’ f ) (R+  r-’I) (3.7) 

is the projection operator onto the subspace of eigenvectors of t? with eigenvalue r. 
Explicitly 

XIX3=- - I  3 x ly=  -q-lpx‘ p xx1 

x3x4=- - 1  4 3 XXJ = - q-’XJP P x x  

(X)Z= 0 = ( P ) 2  
(3.8) 

-(r2+r-2)XlX4-’ ir - ’(?- 1 ) X 2 ~ ’ + i ( r ’ -  1 ) x 3 ~ +  ( r 2 + r - 2 ) ~ 4 2 = ~ .  

This algebra is dual to the coordinate algebra (2.17) but bigger in size. On the other 
hand, the defining relations for Qz(@ namely, P(’)(X@X)=O, reduces to the 
orthosymplectic constraint (2.18). Here P”) is the projector onto the subspace of 
eigenvectors oft? with eigenvalue -r-’ .  
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Making use of the formulae given in section 1 we can obtain the differential 
calculus on the orthosymplectic superplane (3.8): 

a l x ~ = l + r - ~ ~ 1 ~ l - ( i - r ~ z ) ~ a z - ( i - r - z ) x 3 a 3 - ( i - r ~ z ) 2 ? ? ~ 4 ~  

a l p =  -p-1Pal-ir-2(i -r-')x4aa, 

a1x3= -q-'x3a, + i(1 -r-2)x4a2 

alx4=x'a, 
a,x'= -q-'XLa2-ir-Z(1 -r-,)Ya, 
a&?= 1 -Pa2-  (I - r-')(l+ r-3x3a3- ( I  - r-')x4a4 

a,x3 = - r-'X3az 

a ,P = - r-'Pa, 

a ~ ~ = i - x % - ( i - r - ~ ) x ' a ,  

a,x4 = - q -Ix4a3 
a4x1 = x'a4 
a,* = - q-IPa4 

a,x3 = -p-'x3a, 
a x  = 1 + r-'x4a4. 

ala2= -pa2al a,a,= -qa3al 

a2a,= -pa4a2 a,a, = - qa4a3 
a,a, = o = a,a, 
- (r-'+?)a,a,-i?(r-'- 1)a2a,+i(r-2- i)a,a,+(r-2+r2)a,a,=o. 

(3.10) 

Even though Q,(l?) is a hyperplane with anticommuting variables the differential 
calculus given by the l? matrix (3.1) is quite peculiar. The reason for this may be 
traced to the fact that the root -r-' is multiple in nature and therefore the matrix 
( E - B l ) = Q  is nilpotent. 

Previously we have seen how the l? matrix formalism enables us to define the 
complete algebra of variables and derivatives (3.8), (3.9) and (3.10). The calculus is 
covariant with respect to the quantum supergroup OSp,J2/2). The corresponding 
system of super-oscillators can be obtained by making the following substitutions: 

x'-+a: ??-+ai 

aZ-*bl a,-+b2. 
If we impose the reality condition (i.e. p =p, Q =q)  then Hermitian conjugation can 
be shown to be an inner antimultiplicative automorphism of the superoscillator 
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algebra. It would have been more appropriate to use the generalization of the 
We%-Zumino Z? matrix formalism to the supersymmetric case. However, the super- 
symmetric version does not modify the explicit algebra of coordinates and derivatives, 
and hence the super-oscillator algebra. 
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